HackRF
A Low Cost Software Defined Radio Platform

Hackito Ergo Sum 2013

Benjamin
Youssef
Vernoux
Touil
Software Defined Radio (SDR)

Radio by Digital Signal Processing (DSP)
A digital signal is a physical signal that is a representation of a sequence of discrete values like a digitized analog signal.
Analog Audio

• Phonograph
 (Thomas Edison 1877)
• Gramophone / Vinyl records
• Magnetophon / Tape
• Old Telephone
Digital Audio

• DECT (Phone)
• CD/DVD/Blu-Ray
• DAT
• Hard Disk Recorder
The world of analog radio...

Amplifier Mixer -> BPF -> Demod

Oscillator (PLL) -> ADC

Synopsis of a single conversion radio
The Software Defined Radio

Synopsis of a radio implemented by software components

SDR# Software

Amplifier Mixer BPF Demod

Oscillator (CORDIC) Perfect Software Radio Components
Flexibility
Many Radios in one (with the right antenna)
Right Antenna
like cheap (less than 30USD)

Log Periodic PCB Antennas

400 to 1000 MHz
850 to 6500 MHz

http://www.wa5vjb.com/products1.html
Reconfigurability

Software Modification
The Future
All radios will be software radios
Target Operating Frequencies

- **0 - 1 GHz**: NFC, CB/FM radio, Car/Door Key Fob, TI CC subGHz ...
- **1 - 2 GHz**: DECT, GPS, GSM
- **2.4 GHz**: 802.11, Bluetooth, Zigbee
- **5.9 GHz**: DSRC, WAVE, 802.11
Target Bandwidth

- **0 - 1 MHz**: Lot of stuff
- **1 MHz**: Bluetooth
- **2 MHz**: Zigbee, DECT
- **5 MHz**: LTE
- **20 MHz**: 802.11/WLAN
ISM band for unlicensed use

<table>
<thead>
<tr>
<th>Frequency range</th>
<th>Bandwidth</th>
<th>Center frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.765 MHz</td>
<td>6.795 MHz</td>
<td>6.780 MHz</td>
</tr>
<tr>
<td>13.553 MHz</td>
<td>13.567 MHz</td>
<td>13.560 MHz</td>
</tr>
<tr>
<td>26.957 MHz</td>
<td>27.283 MHz</td>
<td>27.120 MHz</td>
</tr>
<tr>
<td>40.660 MHz</td>
<td>40.700 MHz</td>
<td>40.680 MHz</td>
</tr>
<tr>
<td>433.050 MHz</td>
<td>434.790 MHz</td>
<td>433.920 MHz</td>
</tr>
<tr>
<td>902.000 MHz</td>
<td>928.000 MHz</td>
<td>915.000 MHz</td>
</tr>
<tr>
<td>2.400 GHz</td>
<td>2.500 GHz</td>
<td>2.450 GHz</td>
</tr>
<tr>
<td>5.725 GHz</td>
<td>5.875 GHz</td>
<td>5.800 GHz</td>
</tr>
<tr>
<td>24.000 GHz</td>
<td>24.250 GHz</td>
<td>24.125 GHz</td>
</tr>
<tr>
<td>61.000 GHz</td>
<td>61.500 GHz</td>
<td>61.250 GHz</td>
</tr>
<tr>
<td>122.000 GHz</td>
<td>123.000 GHz</td>
<td>122.500 GHz</td>
</tr>
<tr>
<td>244.000 GHz</td>
<td>246.000 GHz</td>
<td>245.000 GHz</td>
</tr>
</tbody>
</table>

Respect laws of your country regarding EMI and the maximum TX power allowed per band.
RECEIVE
OR
TRANSMIT
Half Duplex
(Limited by MCU / USB 2.0HS)
We can live without

• High dynamic range
• Fast DSP/FPGA
• Full-Duplex
COST

High quality analog components

OR

Cheap analog components + CPU/MCU (HackRF)
COST

Single device any laptop owner can afford.

For a price estimated to 300 USD.
OPEN SOURCE
Hardware and Software
(mainly GPL)
HackRF Use Cases

- RFID (Radio Freq Identification)
- Cellular GSM base station
- GPS receiver
- AM/FM Radio TX/RX, APCO-25 (USA) / TETRA (EU) Digital Radio
- Digital Television (ATSC/DVB-T)
- Passive radar
- And lot of others ...
Hardware Design Process

Michael Designer

Jared Consultant
Retrospective
HackRF HW

• 1st Board
MCU/CPLD
Jellybean
16 Apr 2012
Restrospective

Jellybean

Digital
Retrospective
HackRF HW

• 2nd Board
Lemondrop
6 May 2012
Restrospective

Lemondrop

RF TX/RX

2.3 - 2.7 GHz

ADC/DAC

Base Band
JellyBean & LemonDrop
Retrospective
HackRF HW

• 3rd Board Lollipop
23 Jun 2012
Restrospective
Lollipop

SYNTHESIZER
WB
30MHz-6GHz
MIXER GHz

RFFC5071

Front End
Retrospective
HackRF HW

• 4th Board Bubblegum
24 July 2012
Restrospective Bubblegum

SYNTHESIZER
WB
300MHz-4.8GHz
MIXER GHz

TRF3765

Front End
Retrospective
HackRF HW

• 5th Board
Licorice
27 Aug 2012
Restrospective Licorice

SYNTHESIZER
WB
30MHz-6GHz
MIXER GHz

RFFC5072

Front End
Restrospective

All in one
HackRF HW

- 6th Board
- Jawbreaker
- 6 Dec 2012
Jawbreaker HW

• More than 300 components

• Majority of components are 0.4mm×0.2mm (0402 R&C)

• More than 25 IC

• About 2 days of manual assembly and testing for one board
RF Frontend: Generic term for all the circuitry between the antenna and the first intermediate frequency (IF) stage
http://en.wikipedia.org/wiki/RF_front_end

Baseband refers to the original frequency range of a transmission signal before it is converted, or modulated, to a different frequency range
http://www.techterms.com/definition/baseband
HackRF Digital Stage

MAX5864 ADC/DAC
Up to 22MHz

NXP LPC43xx

Maximum 20MHz ADC/DAC
limited by USB2 HS
(about 40MiB/s)
HackRF Clock

Flexible clock generation

Si5351

CLK0: MAX5864/CPLD

CLK1: CPLD (2*CLK0)

CLK2: MCU SGPIO (2*CLK0)

CLK4: 50MHz RFFC5071/2

CLK5: 40MHz MAX2837
HackRF Jawbreaker

HS USB 2.0 BusPowered
(40MiB/s) (max 500mA)

30MHz to Half-Duplex
6GHz OpFreq Transceiver

20MHz Max Open Source
 BW HW & SW
Defense Advanced Research Projects Agency (DARPA)
Cyber Fast Track (CFT)
This is a big project for us.

This isn't a big project for DOD.
The World needs Open Source Hardware for SDR
Public Process
github.com/mossmann/hackrf
Public Process

github.com/mossmann/libopencm3

See us also on IRC
Freenode channel #hackrf
Volunteers!

Everyone is welcome to help us develop SDR tools
100% NDA Free!
NXP LPC43xx
ARM Cortex
DualCore
M4F + M0 @ 204 MHz
SGPIO + FPU(32bits)
HS USB 2.0
libopencm3
Thank you!

DARPA CFT

BIT Systems

Michael Ossmann

Jared Boone

Youssef Touil

Hackito

51
HackRF links

http://greatscottgadgets.com/hackrf
HackRF beta

https://greatscottgadgets.com/forms/hackrf-beta-reg.html
And Now Demo !!
HackRF Host Tools
Windows/Linux

• hackrf_info (board info/ident)
• hackrf_cpldjtag (update CPLD)
• hackrf_max2837 / rffc5071 / si5351c (R/W registers)
• hackrf_spiflash (update fw)
• hackrf_transfer (RX/TX)
HackRF SDR#
FM DEMO
HackRF SDR#
Talkies DEMO
HackRF SDR#
DECT Phone DEMO
BONUS
NXP LPC4330
- Dual Core MCU M4+FPU & M0
- 204 MHz, 264KB SRAM
- High Speed USB 2.0
- SGPIO (used for ADC/DAC up to 40MHz IQ with 20MHz ADC/DAC)
- Open Source development using libopencm3 (LGPL v3)

BOOT MODE
- SPIFI Boot
- USB0 (Recovery mode)

SPIFI
- 1MB SPIFI boot
- Code => SRAM
RFFC5072
- Wideband synthesizer/vco with integrated 6GHz mixer

SI5351C
- Clock generator and VCXO
- Up to 8 independent Clocks

MAX 5864
- ADC / DAC up to 22MHz
- 8 bits ADC and 10 bits DAC

MAX 2837
- 2.3GHz to 2.7GHz Wireless Broadband RF Transceiver

XILINX CPLD
- Mainly used for synchro with SGPIO & MAX5864